GENESIS: The General Earth Science Investigation Suite

Tom Yunck, Brian Wilson, Amy Braverman, Elaine Dobinson and Eric Fetzer "Turning the accomplishment of many years into an hour-glass"
-- Henry V (1,i)

The Vision of Earth System Science

Characterize Earth's varied behavior

Understand the Earth as an integrated system

Predict Earth's response to complex forcings

Today's Earth Science IT Challenges

- Coping with diverse Earth science data sets: Cycle
 - Locating the right products (Data Discovery)
 - Selecting: browse, query, subset, customize...
 - Retrieving large data volumes swiftly
 - Fusing diverse, incommensurate products
 - Visualizing massive multidimensional data
 - Discovering knowledge: Summarize/Analyze/Mine/...
 - Predicting: Data Assimilation, Earth System Modeling: Tools / Environments / Frameworks / CPU
- Sample research scenario Today: Multi-year effort for a modest, cross-instrument study

Computing Paradigms

- Old: Big Iron mainframe with many users
- Current: Desktop work stations connected to Internet;
- Emerging: The Global Grid Computing as a utility
 - Desktops, supercomputers, storage, tools joined as one
 - Petaflops of cpu, petabytes of storage
 - Bulk bandwidths: hundreds of GB/sec
 - Secure, services-based architecture
 - Vast library of analysis and modeling tools
 - Real time 3D visualizations, animations
 - Semantic understanding of service requests
 - Global-scale computing on your desktop

Vision Research Scenario

■ Visual Programming: Drag-and-drop icons to create end-to-end research flow in ~hours rather than years

Powered by SciFloTM

Under the Hood: Five Core Ideas

- Loosely-coupled distributed computing using SOAP
- Exposing scientific analysis operators as SOAP web services
- Specifying a processing stream as an XML document
- Dataflow engine for a parallel execution and load balancing
- Visual point-and-click programming

Guiding Themes

- Decentralization
 - The Global Grid
 - Peer-to-Peer
 - Machine-to-machine
 - Automated workflows

- Distributed execution
 - Dynamic load balancing
 - Grid web services
 - Multi-scale integration
 - Plug-and-play software

Data Discovery...

Current:

- GCMD, EDG, ECHO, FIND, SRB, UDDI, ...
- Integrated archives: EOS-Webster (UNH), GLCF (UMD), TRFIC (Mich State), GHRC (Huntsville), and many others
- Co-op and commercial services: UNIDATA; Coop Climate Rainfall Data Center (CSU); Earth Data Discovery Consortium

Emerging:

- Persistent archives and logical namespaces
- Proliferating peer-to-peer exchange networks
- Content-based-search / Semantic Web: Semantic representation of data enabling computers to understand web content.
- SRB+, NASA Intelligent Archive Program,...
- Unidata THREDDS thematic data registries

Grid Technology, Peer-to-Peer Model

- Flat, decentralized storage, discovery, distribution
- Multicasting / swarming: proliferating indexed local data sets
- Secure electronic data verification / pedigree
- XML messaging among peers
- Scalable queries, access, replication

TeraGrid

Controlled Data Fusion

- Optimal combining of like quantities
 - Fitting NASA's "Missions-to-Measurements" theme
 - Bayesian hierarchical modeling and optimal estimation

- ESMF re-gridding utilities
- OGC: WMS/WCS Geo-referencing info in metadata
- Image co-registration tool for NGA (JPL)
- ESIP Federation Activities
 - GENESIS: Data Fusion for Multi-Sensor ESS (JPL)
 - Synthesizing Carbon, Water & Energy Cycle Prods (GSFC)
 - Inter-Service Data Integration for Geodetic Operations (JPL)

Automated Workflow Control

- "Invisible Hand" executive for loosely-coupled Grid: intelligent autonomous grid agents
- Dataflow documents, distributed execution engines
- Visual flow programming: drag'n'drop icons
- Common semantic framework Semantic Web
- Automated parallelizing/workflow/resource allocation
 - GENESIS "SciFlo" science workflow architecture exploiting XML documents and SOAP grid services
 - NSF GRIST (GRId aSTronomy): a visual environment based on ViPEr for handling workflows via grid services

Standards & Interoperability

- Grid Services: Web Services Resource Framework (WSRF), Globus Toolkit, National Middleware Initiative (NMI), SRB
- Logical namespaces: Persistent URLs for data & services
- Distributed control: XML messaging; SOAP/WSDL/UDDI
- Semantic Web: Ontology Web Language (OWL)
- Data and metadata: content / formats / interfaces
 - OGC Standards: WMS, WCS, WFS, GML,...
 - Earth Science Markup Language (ESML)
 - FGDC / GCMD DIF / Dublin Core
 - OPeNDAP / NetCDF / HDF-EOS
- Key standards activities:
 - Open GIS Consortium
 - Global Grid Forum
 - OASIS, W3C
 - NASA Data System Working Groups

Summary: Directions and Themes

- Decentralized multiscale computing as a utility
- Peer-to-peer discovery, distribution, services
- Ubiquitous machine-machine communications
- Distributed control by XML messaging
- Semantic information representation
- Integrated modeling environments
- Visual workflow programming
- High-performance computing
- Standards Standards

Topics

- Data discovery and selection
- Grid technology, P2P model
- Mass data transfer
- Data visualization
- Data fusion and summarization
- Assisted knowledge discovery
- Environmental prediction / high-end computing
- Automated workflow / resource optimization
- Standards and interoperability

...and Selection (Browse, Query, Subset, Customize)

- Open GIS Consortium: Web Coverage Server
- Commercial DBMSs: Informix Geodetic Data Blade
- Subset.org: Portal to a wide variety of subsetting tools
- Data Interchange: ESML Earth Science Markup Language (UAH) for data/tool interoperability and links to semantic web ontologies

Federation:

- Earth System Science Workbench (UCSB)
- Mobilization of NASA EOS Data & Information Through Web Services (GMU)
- Custom Order Processing (MSFC/UAH/RSS)
- UNITE Interchange Technology Prototype (UAH/JPL/ORNL)
- Ongoing DAAC developments

Data Visualization

- Open GIS Consortium: WMS/WCS
- Some visualization tools:
 - Mapserver (WMS/WCS) (UMinn)
 - Viewer.digitalearth.gov (GSFC)
 - Live Access Server (DODS)
 - ImageTours (Wegman), Limn (Cook)
 - OurOcean, YourSky, Digital Light Table (JPL)

- Immersive Earth (Rice U)
- Virtual Interactive Environmental Worlds (US Sat Lab)
- Visualization for Meso-American Biological Corridor and Beyond (MSFC, UAH)
- Visualization of Yellowstone (CSU Monterey Bay)
- Commercial: Pixar, ILM, Magic Globe, Stormcenter

Assisted Knowledge Discovery

- Advanced algorithms
 - Feature extraction and clustering
 - Data mining, aggregation, summarization
 - Supervised / unsupervised machine learning
 - Support vector machines for classification
- Optical correlators and hardware neural nets for rapid image analysis (JPL)
- Complex data mining and analysis (UAH)
 - Multi-level mining (ADaM)
 - Mining in distributed/federated/parallel processing environments
 - On-board and Event-driven mining (EVE)
- Highly iterated interactive analysis (GENESIS/SciFlo)

ESE Space Missions

Data Mass Transit

- Dedicated optical fiber National LambdaRail
- Multicasting Data pushed to many sites
- Decentralized storage (SANs)
- Direct peer-to-peer exchange
- IP air-to-ground telecom

Environmental Prediction

- Readily coupled, mixed-scale Earth system models
- Integrated modeling environments
 - Earth System Modeling Framework
 - Grid Compute Engine (AIST)
 - Data Assimilation SERVO Grid (AIST)
 - Linked Environments for Atmospheric Discovery (OU/UIUC/UAH/IU/UCAR)
 - Common component architecture
- High-performance computing
 - Grid Computing: TeraGrid, IPG,...
 - Earth Modeling supercomputer (Japan)
 - Terascale Computing Facility (Virginia Tech)
 - ECCO Simulation on the first 512 Node SGI Altix
 - DARPA: High-Productivity Comp Systems (Cascade)

ECCO Ocean Simulation